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Abstract. We analyse the quartic oscillator using the technique of removal of resonances in a
region of parameter space where the system exhibits soft chaos. We obtain analytic expressions for
all primary resonances and thus obtain a semiclassical spectrum. A criterion relating to overlapping
resonances gives an estimate about the break down of the removal of resonance method.

1. Introduction

Single-particle motion in deformed mean fields has been traditionally studied in nuclear physics
with considerable success [1]. The aspect of chaos was of minor importance at the time, since
a nucleus is a comparatively small system, while, for the parameters used, the chaotic nature
of the quantum spectrum manifests itself only at higher energies, that is beyond the region of
interest for usual nuclear structure investigations. For larger systems, like electronic structures
such as metallic clusters or quantum dots, the chaotic nature of deformed mean fields becomes
a more important issue. Not only is an awareness of chaos of interest for technical reasons as in
numerical work, but also new physical structures like shell formation are essentially influenced
by the presence of chaotic motion [2].

There are a number of investigations concerning chaotic aspects for various types of
deformed mean fields [3–5]. In the quoted studies the solution of particular potentials which
are often used in phenomenological approaches has been obtained, but universal features have
rarely been pointed out. What seems to be lacking is a systematic approach of quantum spectra
associated with classical motion showing soft chaos. There is, of course, the trace formula
where the relation between periodic orbits and the semiclassical spectrum is established. In
the exhaustive book by Gutzwiller [9], the difficulty of the trace formula for soft chaos is
discussed and attempts to tackle the problem are presented. In virtually all cases of interest the
deformation of a single-particle potential can be considered as a perturbation of an integrable
problem. It leads generically to a situation of soft chaos. This has been investigated in [7]
where, however, the focus is upon the quantum states density. In [8], where individual energy
levels have been calculated, it becomes clear that only a few, short periodic orbits are sufficient
to adequately describe the quantum spectrum. In the range of validity of the approximation
of this paper the accuracy achieved is similar to that in the above-quoted paper where an
extension of the Berry–Tabor trace formula for integrable systems is used. Note that the
authors emphasize the close relationship between the hyperbolic unstable and the elliptic
stable periodic orbit of similar action: in fact, they form part of the same resonance.
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In this paper, we investigate this problem using as a case study the ubiquitous quartic
oscillator. An essential point of this paper is the analytical tractability by which the basic
principles and the step-by-step procedures are elucidated. The paper is motivated by our
expectation that the methods developed here can be used, in principle, for a large class of
similar problems; in fact, these expectations have been confirmed in certain special cases [4–6].
In general, in contrast to this paper, the appropriate transformations have to be performed
numerically.

The quartic oscillator is a system that displays soft chaos. This means that appreciably
large regions of stability exist in phase space. Moreover, only a finite, preferably small
number of primary resonances (and possibly higher-order resonances) will be important for
the corresponding quantum mechanical case. The simple nature of the quartic oscillator has
evoked extensive studies, both for its classical [10–12], semiclassical [13–16], and its quantum
mechanical aspects [17, 18]. We find analytic expressions for its resonances, and secular
perturbation theory yields an explicit analytical form for each of the primary resonances.

Several mechanisms exist by which a system goes from integrability to global stochasticity.
A stable resonance may undergo a bifurcation sequence, in which case a stable periodic
orbit bifurcates until a dense set of trajectories associated with that resonance occupies a
region of phase space. The semiclassical spectrum of these structures has been extensively
studied [19,20].

Secular perturbation theory [21] provides a general and transparent description of the
mechanism by which global stochasticity emerges. In a separable, i.e. integrable, system the
individual degrees of freedom are independent of each other. Once a perturbing term is added
to the Hamiltonian, which destroys the integrability, regions of phase space lock onto the
periodic orbits [22], in that the invariant tori are destroyed and replaced by many simultaneous
resonances, also denoted as island chains. These resonant islands grow with the perturbation,
but can in the generic case be well approximated by the pendulum Hamiltonian [21], as long
as the perturbation is sufficiently small. Stochastic regions emerge around the separatrix and
grow rapidly with the perturbation. To the extent that the stochastic regions of neighbouring
resonances overlap, the system becomes globally stochastic. We use the onset of overlapping
secondary resonances to estimate the size of the stochastic region near the separatrix.

Secular perturbation theory, as it is used here, is outlined by Lichtenberg and Lieberman
[21]. The technique presented in this paper is entirely general, except for a straightforward
adaptation used here because of a non-generic feature of the quartic oscillator, i.e. scaling.
Section 2 is devoted to the theoretical background necessary to obtain the Hamiltonians near
resonance. In section 3 we derive the semiclassical spectrum by repeatedly making use of
EBK quantization of the approximately integrable Hamiltonian which describes the motion
near the resonance. The resulting spectra are compared with the exact quantum mechanical
results. The nature of our approximation and extensions to more general cases are discussed
in section 4.

2. Classical mechanics and removal of resonances

The Hamilton function of the quartic oscillator is given by

H(p1, p2, q1, q2) = p2
1 + p2

2

2m
+ α

q2
1q

2
2

2
+ bq4

1 +
1

b
q4

2 b > 1

which is the most general form of the Hamiltonian for this particular problem [16]. When
α = 0 the Hamiltonian is integrable and has solutions in terms of elliptic integrals. Several
other values ofα exist for which this Hamiltonian is integrable [11]. As the Hamiltonian obeys
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scaling [16], we need to solve the motion only at one energy. In the following, the Hamilton
function is rewritten in terms of action and angle variables. If the actions are scaled by a factor
γ , i.e.J → γ J , the energy scales as

E→ γ
4
3E. (1)

Action–angle variables are obtained by solving the Hamilton–Jacobi equation [23]. It
yields a transformation to a coordinate system in which the Hamiltonian is independent of the
coordinates, and only depends on integration constants. The actions are then simply functions
of these constants. Finding the inverse of this map allows the integration constants to be written
in terms of the actions, from which the transformation between action–angle coordinates and
the original coordinate system is obtained [21].

Classical perturbation theory can be implemented using a coordinate system suitable for
any ‘adiabatic’ constants. Action–angle coordinates are, however, well adapted to quantum
mechanical problems.

For the unperturbed quartic oscillator (α = 0) this procedure yields

q1(J1,21) =
(

3J1

8K

)1
3
(
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)1
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sn(4K21− K)
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and

H0(J1, J2) = 3

√(
3J1

8K

)4( 1

2m

)2

b +
3

√(
3J2

8K

)4( 1

2m
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b

where sn is the Jacobi elliptic function forκ = −1, andK is the complete elliptic integral of the
first kind atκ = −1. Since there are several definitions for elliptic integrals and functions in
use, we outline the definitions used in this paper in the appendix. From the previous equation
we obtain for the winding number which is the ratio of the underlying frequencies

ω1

ω2
=

∂H0
∂J1

∣∣∣
J2

∂H0
∂J2

∣∣∣
J1

= 3

√
b2
J1

J2
. (3)

The time dependence of21 and22 isω1t +210 andω2t +220, respectively. The full motion is
thus mapped into21 ∈ [0, 1] and22 ∈ [0, 1]. This defines the basic torus of the unperturbed
problem. Closed orbits are obtained for commensurate frequencies. The resonance condition
ω1/ω2 = s/r with s andr integer, is manifestly a function of the actions.

The full Hamilton function (α 6= 0) can now be represented in the unperturbed action–
angle variables and is given by

H(J1, J2,21,22) = H0(J1, J2) + αH1(J1, J2,21,22)

=
 3

√
bJ 4

1 +
3

√
J 4

2

b

 3

√(
3

8K

)4( 1
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)2
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+
α

2
3

√
(9J1J2)2

(8K)4(2m)2
sn2(4K21− K) sn2(4K22 − K). (4)

We expandH1(J1, J2,21,22) as a Fourier series using the Fourier expansion [24] for sn,
namely,

H1(J1, J2,21,22) =
∑
l,m

Hl,m(J1, J2) exp(2π i{l21 +m22})

where

Hl,m(J1, J2) = 1

2
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√
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(8K)4(2m)2
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)
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) otherwise.

HereE is the complete elliptic integral of the second kind (κ = −1). Below we exploit the
fact that the coefficients of this series fall off exponentially with increasingl andm.

The removal of resonance method is based upon a judiciously chosen series of suitable
canonical transformations. The underlying principle of such transformations is outlined in
figure 1. Action–angle coordinates of the unperturbed system are a convenient set of adiabatic
variables to approximate the motion everywhere except near the periodic orbits. There the
topology of the trajectories is different from the one of the integrable system, which requires
another suitable transformation to be made.

The first transformation is indicated by the transition from figure 1(a) to (b). In this
first step the Hamiltonian is rewritten in terms of action–angle variables of the unperturbed
quartic oscillator. Both diagrams represent a Poincaré surface of section. As we focus our
attention upon situations which are characterized by soft chaos, the Poincaré surface of section
resembles an unperturbed situation. There are trajectories which lie on a torus which is only
slightly distorted from that of the unperturbed problem, as is illustrated in figure 1(a) by
dashed curves. In action–angle variables these trajectories have nearly constant action. This
is illustrated in figure 1(b) (dashed curves), where phase space is essentially described by the
unperturbed torus except for the vicinity of a resonance.

In the unperturbed problem where the winding numbers are fixed solely by the constant
actions, a continuous set of periodic orbits exists for a given winding number, since arbitrary
values of the angles satisfying the resonance condition yield periodic orbits. This trivial
degeneracy is removed by the switching on of the perturbation. Generically, one stable periodic
orbit or fixed point remains. Details are displayed in figure 2. The dashed line i in figure 2(a)
and the central point in figure 2(b) is the stable orbit. It is associated with an unstable periodic
orbit (iii in figure 2(a)). The unstable periodic orbit is indicated by small circles in figure 2(b)
and the separatrix related to it by the symbol iii. For clarity of illustration the separatrix of
the corresponding pendulum Hamiltonian is drawn rather than that of the full problem, which
would be difficult to display (it is a homo-clinic tangle: see, e.g. [9]). Near the stable periodic
orbit, a swarm of trajectories becomes attached to it by phase locking. A wavy curve in the
21–22 plane (solid curve ii in figures 2(a) and (b)) characterizes their typical behaviour. These
new tori which are associated with the resonance, i.e. the stable orbit, bring about the break
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Figure 1. Schematic diagram illustrating the successive transformation for the removal of primary
and higher-order resonances.

up of the original torus [3] which is defined by the unperturbed problem. Trajectories with
an action that is sufficiently distant from the resonance, so that they are not trapped by the
resonance, move essentially on the torus of the unperturbed system (iv in figures 2(a) and (b)).
They are well approximated by a Hamiltonian which is obtained by averaging over the angles.

The second step illustrates the transformation to a coordinate system that is co-moving
with the resonance, as is represented in the transition from figure 1(b) to (c). The motion near
the resonance is approximated well by that of a pendulum as long as the perturbation is not
too large. However,̂J is not constant but time dependent due to the angle-dependent terms in
the perturbing potentialH1.
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Figure 2. Illustration of various types of motion for the full problem. Trajectories are given in angle
coordinates (a), and a fraction of phase space (surfaces of section) in action–angle coordinates (b).
For further explanation see the text.

Although removing a resonance cannot approximate the homo-clinic tangle, the
neighbourhood of the stable fixed point is to second order a harmonic oscillator and the
unstable fixed point an inverted harmonic oscillator. As these fixed points are approximated
by functions dependent on the ‘adiabatic’ actions, they will vary little with the perturbation.
Thus the stability coefficients needed for the trace formula are adequately taken into account.
Since the action of the pendulum is well described by a linear approximation, the motion
inside the separatrix resembles a harmonic oscillator, while outside the separatrix it resembles
an inverted oscillator. Any stable resonance with a region of stability too small to generate an
energy level will thus behave as if it was an unstable periodic orbit in the trace formula. As
we assume that the trace formula gives a good description of the chaotic region, we ignore this
effect and concentrate on the region inside the separatrix.

Once we have made the pendulum approximation, we obtain an integrable Hamiltonian in
a limited domain of phase space as an approximation. It can be expressed in its action–angle
variables. The transformation is illustrated by the transformation from figure 1(c) to (d). The
motion is perturbed by higher-order resonances between the effective pendulum frequency
and the original resonance frequency. This is indicated by islands in figure 1(d). For each
higher-order resonance, we can again transform to a coordinate system that is co-rotating with
the resonance, as is illustrated by the transformation from figure 1(d) to (e).

Since the period of a pendulum increases near its separatrix, higher-order resonances
emerge at an increasing rate. It can also be shown that the sizes of the separatrices of these
new resonances grow rapidly near the original pendulum separatrix [21], where the sizes of the
new resonances are again measured by the position of the separatrix of the integrable system
approximating the motion near the periodic orbit. This combined effect creates the stochastic
region. A reasonable criterion about the border line of the stochastic region surrounding the
primary resonance is therefore the first overlap of higher resonances near the separatrix. More
sophisticated techniques, such as those outlined in [21] or in [25] may yield a more precise
delineation of the stochastic region, but the appeal of the present method lies in its conceptual
simplicity when the interest is focused on the semiclassical spectrum.
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In the following, we exemplify the procedure and consider a particular resonance with
the winding numbers/r. We follow the method outlined in [21] except that we choose the
transformation which retains the periodicity in the interval [0 : 1] in the new coordinates.
This choice, outlined in [9] makes no difference to the classical description, but simplifies the
semiclassical calculations as shown below. The canonical transformation

Ĵ1 = J1

Ĵ2 = rJ2 + sJ1

2̂1 = 21− s
r
22

2̂2 = 22

r

(5)

transforms to a frame wherê̇21 = 2̇1 − (s/r)2̇2 = ω1(J1, J2) − (s/r)ω2(J1, J2) measures
the deviation from the resonance. It is small near the resonanceω1/ω2 = s/r, and vanishes at
the resonance. Averaging over the fast angle,2̂2, yields

H̄ = H̄0(Ĵ) + αH̄1(Ĵ, 2̂1)

where

H̄1 = 〈Ĥ1(Ĵ, Θ̂)〉22 =
∞∑
p=0

H−pr,ps(Ĵ)e−2π ip2̂1.

This approximate Hamiltonian is expected to be good near the resonance. Since it is
independent of2̂2, the actionĴ2 = J2 + (s/r)J1 is a constant of motion. As the higher-
order terms in the Fourier expansion fall off exponentially, we ignore the terms with|p| > 1
in the series. The approximate Hamiltonian describing the motion near the resonance is then
given by

H̄r,s = 3

√(
3

8K

)4( 1

2m

)2(
3

√
bĴ 4

1 +
3

√
(Ĵ2/r − (s/r)Ĵ1)4

b
+
α

2
3

√
(Ĵ1)2(Ĵ2/r − (s/r)Ĵ1)2

×
{(
E
K
− 1

)2

+
π4

8K4

rs

sinh rπ
2 sinh sπ

2

cos 2π2̂1

})
. (6)

The illustration in figure 3 for the perturbationα = 0.1 andα = 1 confirms the good quality
of the description of the exact situation.

For increasingα the two main resonances, i.e. those with dominant Fourier components,
begin to overlap. It occurs when two independent resonances, after they have been removed,
share the same region of phase space.

Comparing the Poincaré surface of section of the full Hamiltonian in figure 3(c). with
the section where the resonance has been removed, figure 3(d), the effect of one resonance
on the other can clearly be seen. The approximate Hamiltonian cannot reflect this, as the
approximation contains no information about other resonances.

We now transform to the action–angle coordinates of the Hamiltonian near the resonance
(denoted byI and8 in figure 1(d)). Since equation (6) is independent of22, I2 = Ĵ2 is
already in the correct form. Solving equation (6) for cos2̂1 we can evaluate explicitly

I1 =
∮
Ĵ1 d2̂1. (7)

In figure 4(a), cos2̂1 is plotted as a function of̂J1 for various values of̂J2. The corresponding
plot for 2̂1 is displayed in figure 4(b). The periodic orbit in figure 4(a) corresponds to the point
where the vertex of the parabola-type curves coincides with cos2̂1 = −1 (diamond), while
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Figure 3. Poincaŕe surface of section atE = 1 for the quartic oscillator forα = 0.1 (a) andα = 1
(c). The Poincaŕe surface of section of the Hamiltonian taking into account the principle resonance,
r = s = 2 is shown forα = 0.1 (b) andα = 1 (d).

the separatrix is given by the curve whose vertex coincides with cos2̂1 = 1 (solid curve). The
dependence on̂J2 is nearly linear within the region between the two values for cos2̂1.

To evaluate the integral we make a simplifying approximation. We consider only terms
up to second order in̂J1 and first order inĴ2 in a Taylor expansion of coŝ21. In this way we
obtain the pendulum equation (see the appendix), namely,

Ĵ2 − Ĵ2res= G

2
(Ĵ1− Ĵ1res)

2 − F cos(2π2̂1)
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Figure 4. (a) Plot of cos 2π2̂1 as a function ofĴ1 and (b) 2̂1 as a function ofĴ1 for variousĴ2 at
α = 1.

with

1

F
= −∂ cos 2π2̂1

∂Ĵ2

∣∣∣∣
res

G

F
= ∂2 cos 2π2̂1

∂Ĵ 2
1

∣∣∣∣
res

.

Note that we use here the same symbolsF (andG) even though they denote an action (an
inverse action) while they refer to an energy (an inverse moment of inertia) in the appendix.

From figure 4 the stable or unstable fixed points occur at cos2̂1 = ±1. Since the choice
depends on the sign ofF/G, choosing the stable fixed point leads to a discontinuous spectrum
atα = 0. To obtain a smooth dependence ofF andG and thus the spectrum over the entire
resonance, we expand around the point (21res,J1res) which is determined by the two conditions

∂ cos 2π2̂1

∂Ĵ1

= 0

cos 2π2̂1 = 0.

The separatrix is given by

Ĵ2 = Ĵ2res± F. (8)

Making use of the action of a pendulum, the second action equation (7) is given inside the
separatrix by

I ′1 = I1(E = 1) = 8

√
2(Ĵ2 − Ĵ2res+ F)

G

×
√ Ĵ2 − Ĵ2res+ F

2F
−
√

2F

Ĵ2 − Ĵ2res+ F

K( Ĵ2 − Ĵ2res+ F

2F

)

+

√
2F

Ĵ2 − Ĵ2res+ F
E
(
Ĵ2 − Ĵ2res+ F

2F

)
. (9)

This expression is used below, when the effect of a primary resonance upon the quantum
spectrum is calculated.
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2.1. Higher-order removal of resonance—demarcation of the stochastic region

To obtain an intuitive feeling for the breakdown of the validity of the first-order resonance we
briefly outline the effect of higher-order resonances. However, the method presented here is not
necessarily satisfactory in qualitative terms and is therefore not used for further improvement of
the quantum spectrum. It gives an understanding of the limitations of an analytic perturbative
approach of this kind.

The approximate Hamiltonian near resonance, denoted byK0, is again integrable, with
actionsI1 andI2. The terms left out in removing the primary resonance can be re-introduced
as a perturbation on the new Hamiltonian. The new frequencies are

ω̂1 = ∂K0

∂I1

ω̂2 = ∂K0

∂I2
= ω2

r

whereω̂1 is given approximately by the pendulum Hamiltonian. We consider for the higher-
order resonance

ω̂2

ω̂1
= p

q
.

Following Lichtenberg and Lieberman [21] section 2.6, the Hamiltonian near the higher-
order resonance is given by

Hr,s,p,q = G′(1I1)2 + Jp

√I10

π

√
G

F

Hr,s−q cos 2πφ

whereJp(x) is the Bessel function of orderp, I10 is I1 evaluated at the resonance and we use
the approximation

G′ ≈ ∂ω̂1

∂I1

as∂ω̂1/∂I1 is expected to be the dominant contribution of∂2K0/∂Î
2
1 . Solving for the variation

in 1I1 at the separatrix, we have an estimate of the size of the resonance inI1:

1I ≈

√√√√√√Hr,s−qJp

(√
I10
π

√
G
F

)
G′

.

The behaviour of higher-order resonances is outlined in figure 5. As the separatrix is
approached more and more resonances exist. The island size also grows rapidly as a function
of I1. Thus near resonance many islands will overlap. The first overlap of two neighbouring
islands is a good indication of the outermost intact KAM surface. For the quartic oscillator even
for α ≈ 1, the value of the perturbation where we the pendulum equation becomes inadequate,
more than 90% of phase space (when measured as the fraction of phase space that is regular
in terms ofI1) is still regular.

3. The semiclassical spectrum

For an integrable system the quantum spectrum is obtained by the EBK quantization. This
is obvious forα = 0. If α is nonzero, the system is no longer integrable, yet it is well
approximated by an adiabatic Hamiltonian which is obtained by taking the mean over the
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Figure 5. The behaviour of higher-order resonances.

angles, ifα is not too large. The approximation is good as long as the periodic orbits do
not trap a large part of phase space. In fact, any structure in phase space smaller than ¯h will
not feature in the quantum spectrum. In turn, the neighbourhood of each orbit which traps a
larger region can be treated using the approximate Hamiltonian as described in the previous
section. The essential point is that the new, locally approximate Hamiltonian is integrable and
can therefore also be quantized using EBK quantization.

This can lead in general to multiple representations of phase space. We therefore should
find an estimate as to which Hamiltonian to use in order to obtain the semiclassical spectrum.
As long as the perturbation is small, and the stochastic regions as well as the regions dominated
by the resonances are small, it is straightforward to choose the best approximation. Once the
resonances are large and begin to overlap, several sets of quantum numbers may describe the
same region of phase space. In such a case, a general criterion for the best choice does not
seem to be at hand.

3.1. The semiclassical spectrum without resonances

When the perturbation is small, the motion can be approximated by deforming the exact
tori. This is obtained by ignoring the finer structure of the topology of trajectories near the
resonances. An averaging over the angle-dependent part of the full Hamiltonian thus results
in an approximate potential which we call the adiabatic potential.

Once we have obtained the integrable adiabatic Hamiltonian, we obtain a semiclassical
spectrum via the procedure described by EKB. This procedure requires∮

p dq = h
(
n +

βi

4

)
whereβi is the Maslov index. It increases by unity each time the periodic orbit makes a soft
collision off a caustic, which is in the present case the edge of the potential.
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For the quartic oscillator (and for the harmonic oscillator) the Maslov index is two for
each degree of freedom. Thus the quantization condition reads∮

p1dq1 = 2πh̄(n + 1
2)∮

p2dq2 = 2πh̄(m + 1
2)

or

J1 = 2πh̄(n + 1
2)

J2 = 2πh̄(m + 1
2).

When this is inserted into the adiabatic Hamiltonian, the semiclassical energy eigenvalues
Em,n are obtained by averaging equation (4) over21 and22. This amounts to taking only the
constant term in the Fourier expansion and reads

En,m(α) =
 3

√
b

(
2πh̄

(
n +

1

2

))4

+
3

√
(2πh̄(m + 1

2))
4

b

 3
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8K(−1)

)4( 1

2m

)2

+
α

2
3

√
((6πh̄)2(n + 1

2)(m + 1
2))

2

(8K(−1))4(2m)2
×
(
E(−1)

K(−1)
− 1

)2

. (10)

The spectrum is plotted in figure 6. Obviously no level repulsions can occur, the approximate
spectrum can have only genuine level crossings. Aroundα = 0 the spectrum is virtually exact
except for the lowest levels, where the approximation involving the Maslov indices is unreliable
(recall that even atα = 0 the spectrum is only a semiclassical approximation). Globally, the
spectrum does present an astoundingly fair approximation towards the exact spectrum.

3.2. The semiclassical spectrum near resonance

When the perturbation increases, larger regions of phase space begin to phase lock onto the
periodic orbits of the system. The trajectories are no longer straight lines in angle coordinates,
but begin to oscillate about fixed points. In other words, one particular orbit among the
unperturbed set becomes the stable centre of trajectories in its vicinity, which phase lock onto
it. The actual perturbation determines which particular orbit is selected.

Following the discussion in section 2, secular perturbation theory approximates the motion
near the resonance by an integrable Hamiltonian. As this Hamiltonian is well approximated by
a pendulum Hamiltonian, the separatrix of the pendulum gives a good measure of how much
of phase space is dominated by the resonance. As outlined in the appendix, and illustrated in
figure 7, the motion is described by a vibration about the fixed point for energies between−F
andF . Thus, in terms ofĴ2, the region dominated by the resonance is given by

Ĵ2res− F < Ĵ2 < Ĵ2res+ F.

We rewrite this condition in terms of the original variables using equation (5) to obtain the
separatrix condition

J2 = Ĵ2separatrix− s
r
J1.

The intersection points of the energy and separatrix conditions (figure 7) demarcate the
region dominated by the resonance at a given energy (E = 1). From scaling the region inJ1

andJ2 can then be delineated.
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Figure 6. (a) Graph ofEmn neglecting the effect of resonances forb = 1.2 and (b) the quantum
mechanical spectrum, where ¯h = 1 andm = 1.

Figure 7. Diagram illustrating the region of phase space dominated by a particular resonance.

Inside the resonance the values ofJ1 andJ2 are well approximated by the integrable
Hamiltonian of equation (6). The old angles in terms of the new angles(2̂1, 2̂2) are given by

21 = 2̂1 + s2̂2

22 = r2̂2.
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EBK quantization requires that the actions around each topologically distinct closed curve,C1

andC2 on the torus, be a multiple of Planck’s constant. In21 and22 coordinates, this occurs
whenever21 or22 change by unity. ThusC1 andC2 are associated with21 and22 changing
respectively by unity. The equation above shows that when2̂1 changes by unity, onlyC1 is
traversed. Changinĝ22 by unity traversesC1 r times andC2 s times.

The Hamiltonian near resonance has the actions

I1 =
∮

d2̂1 Ĵ1

I2 =
∮

d2̂2 Ĵ2

and hence the semiclassical quantization conditions:

I1 = h
(
m′ +

ν1

4

)
I2 = h

(
(r + s)n′ +

ν2

4

)
whereν2 = 2(r + s) is the Maslov index of the primitive periodic orbit (as the particle makes
2r collisions with the caustic in theq1 direction and 2s in theq2 direction) andν1 = 2 is due
to the soft collision of the pendulum boundary.

The full spectrum which is brought about by the contribution of the resonance is obtained
by exploiting scaling. SinceI1 andI2 are actions, they scale linearly. We use the quantum
condition, namely,

I1

I2
= I ′1
I ′2
= m′ + 1

2

n′ + ν2
4

whereI ′1 = I1(E = 1) andI ′2 = I2(E = 1). Inserting equation (9) forI ′1 yields

m′ + ν1
4

n′ + ν2
4

= 8

I ′2

√
2(Î2 − Ĵ2res+ F)

G

×
√I ′2 − Ĵ2res+ F

2F
−
√

2F

I ′2 − Ĵ2res+ F

K(I ′2 − Ĵ2res+ F

2F

)

+

√
2F

I ′2 − Ĵ2res+ F
E
(
I ′2 − Ĵ2res+ F

2F

)]
for |Ĵ − Ĵres| < |F |. This equation can be solved forI ′2. UsingI ′2 atE = 1 and scaling it to
the required valueI2 = n′ + ν2/4, gives the spectrum

Em′,n′ =
(
n′ + ν2/4

I ′2

)4
3

.

Recall thatI ′2 is a function of the quotient(m′ + 1
2)/(n

′ + ν2/4).
The quality of this approximation is displayed in figure 8. Note that the linear dependence

onα no longer prevails in contrast to figure 6. The diagram displays energy levels expected to
be the worst, as the approximation of a linear edge for the potential fails for the low-lying energy
levels and are therefore incorrectly modelled by the Maslov index. It is true that the correction
obtained from the resonance is small, yet it represents the correct trend of the quantum spectrum.
Since the pendulum equation is expected to be correct only near the integrable system, higher-
order terms inα (for α < 0) are expected to improve the approximation. However, one
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Figure 8. The solid curves are the quantum spectrum, dashed lines are the adiabatic spectrumEmn
and the dotted curve isEm′n′ of the principal resonancer = s = 2.

cannot hope that the approximate integrable system obtained by the removal of resonance
technique would give the correct spectrum far into the chaotic region. The apparent poor
performance of the spectrum displayed in figure 8 near the integrable case is due to the fact
that the resonance does not occupy sufficient phase space so as to capture an energy level in the
rangeα ∈ [−0.1, 0.1]. The loss of intensity from the adiabatic spectrumEm,n to the spectrum
of the resonanceEm′,n′ in regions of phase space, where both integrable systems approximately
describe the same part of that phase space, is not taken into account in this paper. Neglecting
this loss of intensity gives a spectrum that is discontinous. In the limitα → 0, no resonance
can trap any energy levels, and the integrable semiclassical spectrum prevails.

4. Conclusion

It has been accepted wisdom since the early days of quantum mechanics, that the essential
coordinates for the quantum mechanical understanding of a classical system are action–angle
coordinates. Yet, this important insight has rarely been put to work. Obviously, expressing a
phenomenological potential in spatial coordinates is intuitively more appealing, and rewriting
a Hamilton function in action–angle coordinates is, in general, an arduous task and usually
not amenable to closed analytic expressions. In this paper we have attempted to make the
point that a perturbative approach in terms of action–angle variables does yield a quantum
mechanical spectrum from a classical analysis. The particular choice of the quartic oscillator
is made as it permits analytic elaboration in terms of higher transcendental functions, which
renders the principle and the treatment transparent and illustrative.

The approach is perturbative in nature. The procedure for refinement is well defined in
principle and the limitations are delineated. The treatment of perturbation is classical and is
totally different from the treatment traditionally used in quantum mechanics. There one would
use, to lowest order, the corrections1Em,n = 〈n,m|H1|n,m〉. While it is obvious that this
traditional perturbative approach is bound to fail in a chaotic system except for very small
values ofα (which is not within our interest), our procedure uses the appropriate procedure
for such cases, which is the removal of resonance method. Therefore, even in the zeroth-
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order approximation, which is the averaged Hamiltonian, the levels are assigned quantum
numbers that are different from the ones that would emerge in a traditional quantum mechanical
perturbative approach. The new sets of quantum numbers come about in a natural way. The
assignments take into account the important resonances and are modified as indicated. As a
consequence, while the levels forα = 0 do not coincide with the actual unperturbed levels,
they are superior to the traditional perturbative approach forα sufficiently different from zero.

The discrepancy between the exponential growth of the number of classical periodic orbits
and the power law of the number of quantum levels is resolved in a natural way: separatrices
associated with resonances which cover an area of phase space smaller than ¯h simply do not
feature in the quantum spectrum. In other words, only those unstable orbits, associated with
a stable orbit having a stability region covering a sufficiently large area of phase space, give
rise to a quantum level. Note that unstable orbits do not directly lead to an energy level, only
a stable periodic orbit does (see section 17.6 of [9]). Consequently, an appreciably limited
number of resonances contribute to the quantum spectrum while the fast growing number of
insignificant resonances remains unnoticed in the quantum spectrum. We believe that this
view adds to the interpretation of the trace formula in a system showing soft chaos. We note
in passing that, due to scaling, a resonance produces an infinite set of quantum numbers for
the quartic oscillator; this is in general not the case.

Work is in progress where the same method is used for the deformed Woods–Saxon
potential which is likewise a problem exhibiting soft chaos [2]. There, the corresponding
Fourier transforms can be carried out only numerically, but this is no longer a basic problem
owing to modern computers. The interesting aspect is the dependence of the potential on the
actions (angles) specific to the Woods–Saxon potential due to its flat bottom and steeper walls.
We believe that, once one has become accustomed to ‘view’ a potential in its action dependence
rather than in its spatial form, a crucial step has been made towards the quantum mechanical
analogy of a classical motion in a potential that exhibits soft chaos. Such change of emphasis
is expected to be helpful in interpreting observed spectra of mesoscopic systems like quantum
dots or metallic clusters as in these, owing to the larger particle number, the signature of soft
chaos begins to have an impact upon the quantum spectrum.

Appendix. Miscellaneous forms and definitions

The Hamiltonian of the pendulum is given by

H(p, q) = G

2
p2 − F cos(q)

where the terms for a pendulum in a gravitational field have the meaning

G = 1

ml2

F = mgl
with g being the acceleration due to gravity andm the mass of the pendulum assumed to be
concentrated at the end of the massless rod of lengthl. The canonical coordinatesp andq
are the angular momentum and angle, respectively. The motion can be parametrized by the
equation for the momentum, namely,

p =
√

2(E + F cosq)

G
.
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A.1. The action of the pendulum

The action for the pendulum is given by the integral of the momentum over one cycle, which
leads to

J =
∮

dq

√
2(E + F cos(q))

G

which is given by

J = 8

√
2(E + F)

G



E
(

2F

E + F

)
for E > F(√

E + F

2F
+

√
2F

E + F

)
K
(
E + F

2F

)
+

√
2F

E + F
E
(
E + F

2F

)
for E < F

whereE(κ) is the complete elliptic integral of the second kind andK(κ) is the complete elliptic
integral of the first kind. We obtain the period frequency

ω = 1
4√

2GE

∫ qmax

0
dq√

1+F
E

cosq

which gives the time period

T = 8

√
1

2Gg(E + F)


K
(

2F

E + F

)
for E > F√

E + F

2F
K
(
E + F

2F

)
for E < F

whereK(κ) is the complete elliptic integral of the first kind.

A.2. Action–angle variables for the pendulum

The generating function for the transformation to action–angle variables reads

W(J, q) =
∫ q

0
dq

√
2(E(J ) + F cosq)

G

which gives

2 = ∂W

∂J

=
F1

(
E+F
2F , arcsin

√
2F
E+F sinq/2

)
4K

(
E+F
2F

)
and

q = 2 arcsin

(√
E + F

2F
sn

(
4K

(
E + F

2F
2

)))
.
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A.3. A short outline on elliptic integrals

Many different conventions for the elliptic integrals exist. The convention for elliptic integrals
used in this paper follows those of Mathematica [26]. Thus

F1(φ, κ) =
∫ φ

0

dθ√
1− κ sin2 θ

=
∫ sinφ

0

dt√
(1− t2)(1− κt2)

(A1)

K(κ) =
∫ π

2

0

dθ√
1− κ sin2 θ

=
∫ 1

0

dt√
(1− t2)(1− κt2)

(A2)

E(φ, κ) =
∫ φ

0
dθ
√

1− κ sin2 θ

=
∫ sinφ

0
dt

√
(1− κt2)
(1− t2) (A3)

E(κ) =
∫ π

2

0
dθ
√

1− κ sin2 θ

=
∫ 1

0
dt

√
(1− κt2)
(1− t2) (A4)

5(n;φ, κ) =
∫ φ

0
dθ

1

(1− n sin2 θ)
√

1− κ sin2 θ
(A5)

where F1(φ, κ), K(φ, κ) and5(n;φ, κ) are the elliptic integral of the first, second and third
type. The complete elliptic integrals of the first and second type,K(κ) andE(κ), are defined
for m < 1.

A.4. Various Fourier expansions

The derivation of the following Fourier series is given in [24]:

sn(u, κ) = π

κK(κ)
∑ sin(2m− 1) 1

2πu/K(κ)
sinh(2m− 1) 1

2πK(κ ′)/K(κ)
(A6)

cn(u, κ) = π

κK

∑ cos(2m− 1) 1
2πu/K(κ)

cosh(2m− 1) 1
2πK(κ ′)/K(κ)

(A7)

dn(u, κ) = π

2K(κ)
+

π

K(κ)
∑ cosmπu/K(κ)

coshmπK(κ ′)/K(κ)
(A8)

am(u) = πu

2K(κ)
+
∑ sinmπu/K(κ)

m coshmπK(κ ′)/K(κ)
(A9)

sn2(u, κ) = 1

κ

1− E(κ)
K(κ)

− π2

K2(κ)

∞∑
m=1

m cos
(
mπu
K(κ)

)
sinh

(
mπK(κ ′)
K(κ)

)
 . (A10)
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